WEAK DIMENSION AND CHAIN-WEAK DIMENSION OF ORDERED SETS
نویسندگان
چکیده
منابع مشابه
Weak dimension of FP-injective modules over chain rings
It is proven that the weak dimension of each FP-injective module over a chain ring which is either Archimedean or not semicoherent is less or equal to 2. This implies that the projective dimension of any countably generated FP-injective module over an Archimedean chain ring is less or equal to 3. By [7, Theorem 1], for any module G over a commutative arithmetical ring R the weak dimension of G ...
متن کاملdedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولThe Weak Ope and Dimension - Eight Operators
We discuss recent work which identifies a potential flaw in standard treatments of weak decay amplitudes , including that of ǫ ′ /ǫ. The point is that (contrary to conventional wisdom) dimension-eight operators contribute to weak amplitudes at order G F αs and without 1/M 2 W suppression. The effect of dimension-eight operators is estimated to be at the 100% level in a sum rule determination of...
متن کاملConstructive Dimension and Weak Truth-Table Degrees
This paper examines the constructive Hausdorff and packing dimensions of weak truth-table degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dimH(S) and constructive packing dimension dimP(S) is weak truth-table equivalent to a sequence R with dimH(R) ≥ dimH(S)/dimP(S)− ǫ, for arbitrary ǫ > 0. Furthermore, if dimP(S) > 0, then dimP(R) ≥ 1− ǫ. The re...
متن کاملThe Dimension of Random Ordered Sets
Let P = (X, <) be a finite ordered set and let I PI denote the cardinality of the universe X. Also let A(P) denote the maximum degree of P, i.e., the maximum number of points comparable to any one point of P. Fiiredi and Kahn used probabilistic methods to show that the dimension of P satisfies dim(P) I c,A(P) log(P1 and dim(P) 5 c,A(P) log2A(P) where c , and c, are positive absolute constants. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Korean Mathematical Society
سال: 2005
ISSN: 1015-8634
DOI: 10.4134/bkms.2005.42.2.315